planning transport design environment infrastructure

Document 3.1 - ES Volume 2

Appendix 10.2: WKN Drainage Design Philosophy

Wheelabrator Kemsley (K3 Generating Station) and Wheelabrator Kemsley North (WKN) Waste to Energy Facility DCO

September 2019 - Submission Version

PINS ref: EN010083

Title: Drainage Design Philosophy

Project: WKN Proposed Development

Prepared for: Wheelabrator Technologies

Date: 21/11/2018 Ref: 019593-RPS-SI-XX-RP-D-0030 RPS Planning & Development Sherwood House Sherwood Avenue

Newark Nottinghamshire NG24 1QQ

Tel:01636 605700Email:rpsnewark@rpsgroup.com

Successful Partners DELIVERING QUALITY

QUALITY MANAGEMENT

Prepared by:	Louis Sime
Authorised by:	Dean Watson
Date:	21/11/2018
Project Number/ Document Reference:	019593-RPS-SI-XX-RP-D-0030
Revision / Date:	29/10/2018 – First Issue 05/11/2018 – P01 – Revised following Client comments 05/11/2018 21/11/2018 – P02 – Revised following Client comments 19/11/2018

COPYRIGHT © RPS

The material presented in this report is confidential. This report has been prepared for the exclusive use of RPS Planning & Development and shall not be distributed or made available to any other company or person without the knowledge and written consent of RPS Planning & Development or WTI.

CONTENTS

1	INTRODU	CTION	. 4
2	PROPOSI	ED SURFACE WATER DRAINAGE	. 6
3	SURFACE	EWATER DESIGN PARAMETERS/CONSTRAINTS	. 9
4	PROPOSI	ED FOUL WATER DRAINAGE	10
5	PROPOSI	ED PROCESS WATER DRAINAGE	11
6	ADOPTIO	N & MAINTENANCE	12
APPE	NDIX A	RPS DRAWINGS	13
APPE	NDIX B	RPS CALCULATIONS	14

1 INTRODUCTION

- 1.1 RPS has been commissioned to produce a Drainage Design Philosophy for the WKN Proposed Development, a waste to energy facility on the Swale Estuary at Sittingbourne in Kent. The site is, located adjacent to the existing K3 Site.
- 1.2 The purpose of the Drainage Design Philosophy report is to outline the design principles for surface and foul water drainage to be adopted in the WKN Site. The report has been produced in conjunction with the Flood Risk Assessment produced for the development, RPS Report JER1519 November 2018.
- 1.3 The contents of this report are to be read in conjunction with all supporting drawings and/or documents referenced herein, appended to this report or submitted in support of the DCO application for the WKN Proposed Development.

1.4 Site Description

- 1.4.1 The WKN Site is located adjacent to the existing K3, located off Swale Way / Ridham Avenue, approximately 2km to the north-west of Kemsley town centre, approximate National Grid Reference 592169, 166647. The eastern edge of the WKN Site bounds the Swale estuary, a tidal channel which separates the Isle of Sheppey from mainland Kent. The WKN Site has an area of approximately 2.4 Hectares.
- 1.4.2 The WKN Site currently comprises of temporary hardstanding to facilitate the construction of the neighbouring K3 to the south with no known formal drainage infrastructure. The WKN Site is accessed via an existing private access road from the adjoining Kemsley Paper Mill site.
- 1.4.3 The WKN Site has a proposed platform level of approximately 6.3m AOD with a retaining structure across a majority of its northern boundary which divides it from the lower lying adjacent salt marsh.
- 1.4.4 The adjacent K3 Site, which is currently under construction, is permitted to discharge surface water drainage directly to the Swale Estuary, via a tidal outfall, which operates only in periods of low tide. During high tides, the outfall would be 'tide locked' by the means of a non-return flow valve, during which time all surface water runoff would be retained on site.
- 1.4.5 Foul drainage provision for the WKN Proposed Development is proposed to be drained via a newly constructed on-site gravity sewer system discharging to a new pumping station and rising main. Foul discharge from the WKN site is then pumped back to the privately owned foul drainage system located on the main Kemsley Paper Mill site.

1.5 Flood Risk Assessment

- 1.5.1 A Flood Risk Assessment Report reference JER1519 November 2018 has also been produced by RPS regarding the WKN Proposed Development.
- 1.5.2 This document identifies the WKN Site to be located with almost wholly within Flood Zone 2, with some localised areas falling within Zones 1 & 3. As such, the finished site level will set to a minimum of 6.3m AOD.

1.6 Ground Conditions

- 1.6.1 A phase II site investigation undertaken by RPS in July 2009 indicated that the geological strata beneath the adjacent site comprises of the following:
 - Cohesive made ground to maximum thickness of 4.5m.
 - Cohesive alluvium to maximum thickness of 3.5m
 - London clays to maximum thickness of 5m.

These deposits overlay the solid geology associated with the Woolwich and Thanet sands and Cretaceous bedrock Chalk. It is anticipated that the proposed WKN Site will be made up of a similar geological strata and therefore, recommendations of the aforementioned report will be considered during detailed design.

2 PROPOSED SURFACE WATER DRAINAGE

- 2.1 The proposed new surface water drainage system will be designed using current MicroDrainage analysis software, ensuring all planning requirements, Lead Local Flood Authorities (LLFA) and Environment Agency (EA) guidelines are satisfied to prevent uncontrolled flooding of the WKN Site and surrounding areas.
- 2.2 The on-site surface water drainage network for the WKN Site will comprise of a single piped system collecting surface water runoff from building roof and hardstanding areas. All runoff will be drained via a Class 1 bypass oil interceptor, sized appropriately to accept the catchment area.
- 2.3 An external on site plant re-fuelling area and diesel fuel tank is to be provided on the western boundary of the WKN Site. This area will be isolated from the general hardstanding by way of a surface water channel drain surrounding the fuelling area, and then connected via a Class 1 full retention forecourt separator, prior to discharge into the surface water drainage system.
- 2.4 Surface water runoff from the external hardstanding areas will be collected as follows;

Car parking, HGV parking and site access roads – Linear drainage including combined kerb drainage units and channel drains

Roof areas – The buildings roofs will be drained by a specialist design syphonic roof drainage system with valley and eaves gutters and primary and secondary outlets in accordance with BS EN 12056-3:2000 to accommodate run-off rates in accordance with design rate Category 3.

- 2.5 The WKN Site drainage has allowed for controlled flooding during storm events above the 1:30 year return period. The difference between the critical 30 year and the 100 year (plus climate change) return period storms have been accommodated within linear drainage devices e.g. combined kerb drainage and site access roads to ensure flood waters are contained within the site demise. No flooding detrimental to buildings shall occur during any modelled storm event. No surface water run-off from paved or other impermeable surfaces shall be permitted to escape onto the surface of adjacent sites for the model scenarios stated.
- 2.6 Surface water runoff from hardstanding and roofs will discharge directly to a below ground gravity drainage system into an on-site surface water attenuation pond, designed in accordance with the CIRIA C753 SuDS Manual. The attenuation pond will provide detention of flows during low intensity rainfall events and assist with removal of sedimentation from surface water runoff. The pond will also provide surface water attenuation storage during extreme rainfall events to prevent uncontrolled flooding of the WKN Site.
- 2.7 Surface water will be discharged offsite from the attenuation pond into the Swale Estuary to the east of the WKN Site. The associated Flood Risk Assessment states that there are no EA discharge requirements in terms of runoff quantity for discharge into the Swale Estuary. Surface water will therefore be discharge un-attenuated via a new headwall adjacent to the existing headwall serving the neighbouring site.
- 2.8 Due to the tidal nature of the Swale Estuary, a tide locked scenario with no discharge will be considered in the event that the outfall is fully submerged. A 1 in 200 year + 2070 Climate

change tide level of 5.28mAOD will be considered for the sizing of the attenuation pond as identified in the associated FRA, Document Ref JER1519 October 2018.

- 2.9 Considering a proposed outfall level of 2.650mAOD, the high tide level considered will tide lock the proposed drainage system and prevent discharge for a period of 5.8 hours as per the Spring Tide Cycle drawing within Appendix A.
- 2.10 The attenuation pond will therefore be sized to accommodate all runoff from the 6 hour (360 minute) 1 in 100 year +20%CC rainfall event with no discharge.
- 2.11 Using FEH rainfall data for coordinates 592000 166800 the 6 hour 1 in 100 year storm can be generated in MicroDrainage to give an average storm intensity of 12.458mm/hr, see Appendix B. The depth of rainfall in this period can then be calculated as follows.

12.458mm/hr	х	6 hours	=	74.748mm
74.748mm	х	20%cc	=	89.698mm

The total rainfall in this period is therefore considered to be 90mm.

RPS Impermeable areas drawing, contained within Appendix A, indicates a total site area of 2.44ha comprising of permeable and impermeable site catchment areas. A site specific runoff coefficient of 0.79 has been calculated based on the ratio of permeable and impermeable areas. The required attenuation volume is therefore calculated as 1740m³

- 2.12 In order to ensure that the attenuation pond will have protection against sea water inundation during extreme tide events, the top of bank level will be set to a minimum level of 5.88 m, which provides 600mm freeboard above the predicted maximum 5.28m AOD 2070 storm tide level.
- 2.13 An automatic penstock with associated telemetry equipment will be installed into the penultimate chamber before the headwall to ensure the capacity of the attenuation pond is not occupied by any rising tide.
- 2.14 Calculations indicate that in order to achieve free discharge from the site drainage system to the attenuation pond for all rainfall events, the water level in the pond should not exceed 5.500m AOD, ensuring a minimum of 300mm freeboard is available above the maximum water level to top of pond.
- 2.15 Any rainwater harvesting storage volume required for re-use in the waste to energy plant will be situated below the outfall level of the pond to ensure the required attenuation volume is maintained.
- 2.16 The outfall pipe to the pond will be designed so that the pond can fully empty in within the 6.2 hour window when the tide falls below the outfall level in the unlikely event of two successive high tide levels.

2.17 Surface Water Quality and Pollution Control

2.17.1 Proposed run-off quality control for the WKN Site will include proprietary oil/petrol interceptor units supported by an attenuation pond which provides multiple benefits in terms of water quality, quantity and amenity. Additional water quality features including tree-pits, rain gardens and Permeable pavements were considered in the concept design stage but were discounted due to the poor/aggressive ground conditions which deem these financially unviable.

- 2.17.2 A water quality risk assessment has been carried out using the SuDS hazard mitigation indices in accordance with Chapter 26, of the CIRIA C753 SuDS Manual. Under this method of assessment the worst case land use classification has been considered for the WKN Proposed Development including industrial roofs, non-residential parking and haulage yards which can be considered as having "high" pollution hazard level.
- 2.17.3 A combination of SuDS and proprietary treatment systems in the form of oil / petrol interceptor units have been utilised to mitigate the pollution from the identified land use classifications. The following tables demonstrate that the SuDS Mitigation indices provided by the features exceed that of the associated pollution hazard index.

	Pollution Hazard	SuDS Component	TSS	Metals	Hydro- carbons
Pollution Hazard Indices	High		0.8	0.8	0.9
Proposed SuDS Mitigation I ₁		Proprietary treatment system (conservative estimate)	0.75	0.75	0.75
Proposed SuDS Mitigation I ₂		Pond	0.7	0.7	0.5
Total SuDS Mitigation (=l ₁ +0.5xl ₂)			1.1	1.1	1.0

2.17.4 The pollution control features included in the analysis have been incorporated into the WKN Site wide concept drainage strategy the location of which can be seen in the Drainage Layout drawing 019593-RPS-SI-XX-DR-D-0300 contained within Appendix A.

3 SURFACE WATER DESIGN PARAMETERS/CONSTRAINTS

- 3.1 The new surface water drainage system has been designed using current analysis software, MicroDrainage by XP Solutions, ensuring planning guidelines are satisfied to prevent uncontrolled flooding of the WKN Site and surrounding areas.
- 3.2 Flooding shall not be permitted in any area for events up to the 1 in 30 year return period storms.
- 3.3 For storms in excess of 1 in 30 year events, controlled temporary overland flooding is permitted with flood depths restricted accordingly to consider public Health & Safety.
- 3.4 No flooding detrimental to buildings shall occur during any storm event
- 3.5 Surface water run-off from paved or other impermeable surfaces shall not be permitted to escape onto the surface of adjacent sites.

3.6 **Design Variables**

- Rainfall: FEH Data; FEH CD-R version 3 Grid Ref E 592000, N 166800.
- Design Return Period: 2, 30 and 100 (+20% climate change) years.
- Climate change: rainfall profiles increased by 20% for 100 year return period
- Volumetric Runoff coefficient: 0.75 Summer, 0.84 Winter
- Global time of entry: 4mins to all areas, 15mins to gravel areas
- Infiltration: Ignore for peak flow design
- Backdrops: Allow in design; maximum depth of 1.5m
- **Velocity:** 0.75 m/s for self-cleansing (private drainage)
- 3.7 The WKN Site drainage system has been checked against following storm intensities and durations:

Free discharge

- 2 year return period 15mins to 1440mins storm duration
- 30 year return period 15mins to 1440mins storm duration
- 100 year return period (+20% climate change) 15mins to 1440mins storm duration

No discharge

- 2 year return period 15mins to 360 mins storm duration
- 30 year return period 15mins to 360 mins storm duration
- 100 year return period (+20% climate change) 15mins to 360 mins storm duration
- 3.8 Modelled results have been provided as Appendix B for the worst case no discharge scenario. An orifice plate of 1mm diameter has been incorporated into the last chamber of the network to simulate a closed penstock. These results indicate limited surcharging of the network in the 1 in 2 year storm, No flooding in the 1:30 year storm and controlled surface flooding in the critical 1 in 100 year +CC return period. Temporary surface flooding for site hard standings will be limited to a maximum depth of 125mm.

4 PROPOSED FOUL WATER DRAINAGE

- 4.1 A new foul water drainage system is required to serve the new site office and mess facility on the WKN Site. It is currently proposed that the foul drainage discharges offsite to the D.S. Smith waste treatment facility to the north of the WKN Site via third party assets. Connection point to be confirmed following discussions with third parties.
- 4.2 The foul water drainage system is to be designed in accordance with the frequency factors and discharge units set out in BS EN 12056-2:2000, 'Gravity drainage systems inside buildings Part 2: Sanitary pipework, layout and calculation'. The network will accommodate foul water discharge from all welfare sanitary ware facilities, hand washing facilities, wash-down, compactor and external plant areas as required.
- 4.3 The foul water network will typically comprise of gravity sewers, with a package pumping station also included to achieve the high level invert connection required at the existing discharge spur. Pump stations will be provided with 24 hour emergency storage volume capacity in accordance with Building Regulations Document H. Reference should be made to RPS drawing within Appendix A.
- 4.4 All canteens with hot cooking facilities are to have suitable grease traps or chemical dosing systems designed and installed by the specialist kitchen installation contractor.

5 PROPOSED PROCESS WATER DRAINAGE

- 5.1 The onsite surface water drainage network for the WKN Site will be split into two separate drainage systems. The first drainage system will collect clean surface water runoff (i.e. from building roof areas) and store it in the lagoon. The second drainage system will collect 'dirty' runoff (i.e. from the fuel bunker) and store it in the 'dirty' water tank to be constructed in accordance with BS EN 1992-3:2006 'Design of Concrete Structures Part 3: Liquid retaining and containment structures'. This 'dirty' water will then be used in the process as required (for example for cooling hot ash).
- 5.2 Water used in the waste-to-energy process (boiler water) is continually recycle. No boiler water is to be discharged to the surface water system.

6 ADOPTION & MAINTENANCE

6.1 The maintenance for all plot specific drainage infrastructure will be the responsibility of the owner/occupier of the proposed development. The attenuation pond and associated discharge pipe shall also be the responsibility of the site owner/occupier. Details of the maintenance activities for the constructed drainage infrastructure will be passed to the end user as part of an Operation and Maintenance Manual post completion. Typical maintenance activities may include;

Element	Access Method including specific access equipment	Method of Maintenance	Frequency Required
Roof Gutters	Scaffolding / Cherry pickers to be used where required.	General cleaning of gutters. Jet cleaning where required.	Periodic inspection of gutters to ensure rainwater outlets do not become blocked. Periodic renewal of gutter coatings to prevent corrosion.
Oil / Petrol Separators	In accordance with H&S regulations and confined spaces requirements.	Refer to manufacturer's guidance.	Bi-annual inspection and emptying.
Channel Drains / Kerb Drainage	In accordance with H&S regulations.	Monitor to ensure no blockages develop. Jet cleaning where required.	Bi-annual jet cleaning of channel drains.
Silt-traps and Gullies	In accordance with H&S regulations.	Monitor to ensure no blockages develop.	Bi-annual inspection and emptying of all silt traps and gullies.
Penstock Valves/ Non- Return Flap Valves	In accordance with health and safety regulations and confined spaces requirements.	Monitored to ensure no blockages develop in accordance with the manufacturers recommendations.	Bi-annual inspection or in accordance with the manufacturers recommendations, whichever occurs sooner.
Surface Water Ponds and Swales	In accordance with H&S regulations	General cleaning and monitoring to ensure no blockage. Remove litter and debris. Cut grass and manage vegetation. Inspect inlets and outlets	Bi-annual inspection, cleaning and removal of silt and/or debris
Pumps	In accordance with health and safety regulations and confined spaces requirements.	Monitored via visual and audible alarms in development gatehouse to ensure no blockages develop in accordance with the manufacturers recommendations.	Bi-annual inspection or in accordance with the manufacturers recommendations, whichever occurs sooner.
Headwall	In accordance with health and safety regulations.	Monitored to ensure no blockages develop.	Bi-annual inspection and clearance of any debris

APPENDIX A RPS DRAWINGS

019593-RPS-SI-XX-DR-D-0300

019593-RPS-SI-XX-DR-D-0301

019593-RPS-XX-XX-DR-D-0302

Proposed Drainage Layout

Impermeable Areas

Spring Tide Cycle

S11

S13

S15

S16

S18

S19

INT2

S20

POND

S21

S17

S14

S12

6.000 2.324 1800

6.000 2.383 1800

2.492

1.514

1.588

6.000 2.662 1800

6.000 2.790 1800

2.917

2.938

2.880 -

2.900 1500

6.000 2.615

1.200 1200

1800

1350

1350

1800

1800

1800

6.000

6.000

6.000

6.000

6.000

6.000

5.880

5.880

5.000 2.213

1.006 3.676

1.007 3.617

1.008 3.508

7.000 4.800

7.001 4.486

7.002 4.412

1.009 3.385

1.010 3.338

1.011 3.210

1.012 3.083

1.013 3.062

1.015 2.980

OUTFALL

3.000

1.014

750

750

750

300

450

450

750

750

750

75

750

600

600

1

1

7

7

1 7

1

1

1

© 2018 RPS Group

Notes

- This drawing has been prepared in accordance with the scope of RPS's appointment with its client and is subject to the terms and conditions of that appointment. RPS accepts no liability for any use of this document other than by its client and only for the purposes for which it was prepared and provided.
- If received electronically it is the recipients responsibility to print to correct scale. Only written dimensions should be used.
- 3. This drawing should be read in conjunction with all other relevant drawings and specifications.

Key:

New Headwall IL= 2.650mAOD

mØ @

1:*** <u>@</u> 0	FW Drain (I/D & Gradient)
nmØ @ 1:***_	SW Drain (I/D & Gradient)
- < - <	FW HDPE Rising Main
	FW Manhole
<u>S2</u> –	SW Manhole
	FW Pumping Station
• RWP	Rainwater Pipe (c/w RE)
• SDP	Syphonic Primary Downpipe
	Linear Drainage e.g. Kerb/Slot Drain
(Headwall
INT1	Proprietary Oil Interceptor Unit

			/ /
		/	
		/	/ //
	Pines In		
	Invert	Diameter	Backdron
	Level (m)	(mm)	(mm)
	Lever (III)	(1111)	(11111)
000	4 765	150	
000	4 765	150	
000	4 765	225	75
000	4.703	225	/5
001	4.002		
000	4 378	525	
000	4.376	225	
001	4 309	525	193
001	4.505	525	155
200	3 853	750	
000	4 686	375	458
000	4.000	575	
004	3,776	750	
000	4 859	150	483
005	3.676	750	-100
006	3.617	750	
007	3.508	750	
	0.000	/ 30	
000	4.636	300	
001	4 412	450	
008	3,385	750	
002	4,300	450	616
009	3,338	750	010
010	3.210	750	
011	3.183	750	
012	3.062	750	
013	3.014	750	164
014	2,980	600	104
015	2.500	600	
272	2.707	000	

SCALE 1:500

SCALE 1:500

© 2018 RPS Group

Notes

- This drawing has been prepared in accordance with the scope of RPS's appointment with its client and is subject to the terms and conditions of that appointment. RPS accepts no liability for any use of this document other than by its client and only for the purposes for which it was prepared and provided.
- If received electronically it is the recipients responsibility to print to correct scale. Only written dimensions should be used.
 This description the left have a leave to be used.
- This drawing should be read in conjunction with all other relevant drawings and specifications.

Impermeable Areas = 2ha

Permeable Areas

= 0.44ha

Rev	Description		Ву	Ckd	Date					
	RPS									
	Sherwood House,Sherwoo Newark, Nottinghamshire, T:01636 605 700 E: rpsn	od Avenue, NG24 1QQ ewark@rpsgroup.com								
	Client Whee	labrator								
	Project WKN Waste to Energy Facility									
	Title Imperme	able Areas								
	Status S Preliminary 1 Project Leader D GB L	icale :500 @A1 Drawn By JS	Date Cr 29.10.2 Checke DW	ł						
	Document Number		Revisi	on	Suitability					
	019593-RPS-SI-XX-DF	R-D-0301	-	01950	S2 93					
	Project Number Originator - Zone - Level -	Type - Role - Drawing Number	R	PS Project N	umber					
	i		psgrou	ip.coi	n/uk					

© 2016 RPS Group

Notes

- This drawing has been prepared in accordance with the scope of RPS's appointment with its client and is subject to the terms and conditions of that appointment. RPS accepts no liability for any use of this document other than by its client and only for the purposes for which it was prepared and provided.
- 2. If received electronically it is the recipients responsibility to print to correct scale. Only written dimensions should be used.
- 3. This drawing should be read in conjunction with all other relevant drawings and specifications.

ev	Description			Ву	Ckd	Date				
	RPS	5								
	Sherwood House,Sher Newark, Nottinghamsh T:01636 605 700 E: r	wood Avenue, ire, NG24 1QQ psnewark@rpsgroup.com								
	Client									
	Wheelabrator									
	Project WKN Waste to Energy Facility									
	Title Spring	Tide Cycle								
	Status Preliminary	Scale N.A. @A3	Da 29	te Cr .10.2	eate 018	d				
	Project Leader GB	Ch DV	ecke V	d by						
	Document Number			Revisio	in	Suitability				
	NK018570 019593	-RPS-XX-XX-DR-D-030	12	-		S2				
	Unginator - Zone -	Level - Lype - RDIE - Urawing Number								
			rps	grou	p.co	m/uk				

APPENDIX B RPS CALCULATIONS

RPS Group Plc						Page	1			
Technology Services										
Sherwood House, Sherwood Ave.										
Newark, Nottinghamshire, NG						Mic	ſŪ			
Date 29/10/2018 12:01	Design	ed by lo	ouis.sim	le		Dra	inade			
The WKN waste to Energy Fac	Notwor	a by 1-2018 1	1							
Innovyze Network 2018.1										
STORM SEWER DESIGN by the Modified Rational Method										
Desi	<u>gn Criter</u>	ia for S	Storm							
Pipe Sizes	STANDARD Ma	nhole Siz	zes STANDA	ARD						
	FEH Rainfa	ll Model			2.0					
R	eturn Perio FEH Rainfal	a (years) l Version	1		30 1999					
	Site	Location	GB 59200	0 16	6800					
		C (1km)		-0	.025					
		D2 (1km)		0	.389					
		D3 (1km)		0	.250					
		F (1km)		2	.546					
Maximum Time of	mum Rainfal	l (mm/hr)			100					
Maximum Time of	Foul Sewage	(1/s/ha)		0	.000					
Volu	metric Runo	ff Coeff.		1	.000					
Add Flow	/ Climate C	hange (%)			001					
Minimum	Backdrop H	eight (m)		0	.200					
Maxımum Min Design Depth	Backdrop H for Optimis	eight (m) ation (m)		1	.500					
Min Vel for Au	to Design o	nly (m/s)			1.00					
Min Slope fo.	r Optimisat	ion (1:X)			500					
Desi	gned with 1	Level Sof:	fits							
Network	Design I	able for	r Storm							
PN Length Fall Slope I.Area (m) (m) (1:X) (ha) (T.E. Ba (mins) Flow	ase (1/s) (n	k HYD nm) SECT	DIA (mm)	Section	Туре	Auto Design			
1.000 7.400 0.185 40.0 0.031	4.00	0.0 0.	600 o	150	Pipe/Cor	nduit	ď			
2.000 5.600 0.110 50.9 0.022	25.00	0.0 0.	600 o	150	Pipe/Cor	nduit	æ			
3.000 10.200 0.185 55.1 0.045	4.00	0.0 0.	600 o	225	Pipe/Cor	nduit	0			
Ne	twork Res	ults Tab	ole							
PN Rain T.C. US/IL Σ I	.Area Σl	Base Fo	oul Add F	'low	Vel Ca	ap Fl	.ow			
(mm/hr) (mins) (m) (ha) Flow	(l/s) (l	/s) (1/:	s)	(m/s) (1/	/s) (l	/s)			
1.000 100.00 4.08 4.950	0.031	0.0	0.0	0.0	1.60 28	3.2 1	1.2			
2.000 72.60 25.07 4.875	0.022	0.0	0.0	0.0	1.41 25	5.0	5.7			
3.000 100.00 4.10 4.950	0.045	0.0	0.0	0.0	1.77 70	0.2 1	6.2			
©.	1982-2018	Innovyz	ze							

RPS Gro	oup Plo	C									Pag	e 2
Technol	ogy Se	ervic	es									
Sherwoo	d Hous	se, S	herwo	od Ave.								
Newark,	Nott	ingha	mshir	e, NG.	•••						Mi	
Date 29	/10/20	018 1	2:01		De	signed by	loui	s.sim	e			
File WKN Waste to Energy Fac Checked by											anaye	
Innovyze Network 2018.1												
				Networ	k Desi	ign Table	for S	torm				
	_		_			-	_					
PN	Length (m)	Fall (m)	Slope	I.Area	T.E. (mine)	Base	k (mm)	HYD	DIA (mm)	Sectio	on Type	Auto
	(11)	(,	(1.4)	(iia)	(11113)	110 (1/3)	(11111)	0101	(11111)			Design
1.001	26.500	0.088	300.0	0.000	0.00	0.0	0.600	0	225	Pipe/C	Conduit	ď
1.002	20.600	0.186	111.0	0.047	0.00	0.0	0.600	0	225	Pipe/C	Conduit	ď
4.000	24.500	0.123	200.0	0.174	4.00	0.0	0.600	0	525	Pipe/C	onduit	a
4.001	10.300	0.069	150.0	0.106	0.00	0.0	0.600	0	525	Pipe/C	Conduit	ě
1 000				0 110						/		
1.003	15.100	0.038	400.0	0.118	0.00	0.0	0.600	0	/50	Pipe/C	Conduit	ď
5.000	11.600	0.039	300.0	0.142	4.00	0.0	0.600	0	375	Pipe/C	Conduit	ď
1.004	30.900	0.077	400.0	0.000	0.00	0.0	0.600	0	750	Pipe/C	Conduit	மீ
6.000	9.100	0.091	100.0	0.015	4.00	0.0	0.600	0	150	Pipe/C	Conduit	æ
1.005	35.100	0.100	350.0	0.056	0.00	0.0	0.600	0	750	Pipe/C	Conduit	ď
1.006	20.700	0.059	350.0	0.160	0.00	0.0	0.600	0	750	Pipe/C	onduit	e e e e e e e e e e e e e e e e e e e
1 009	30 800	0.109	250.0	0.034	0.00	0.0	0.000	0	750	Pipe/C	onduit	
1.000	30.000	0.125	230.0	0.034	0.00	0.0	0.000	0	150	riperc	,onduit c	Ū,
7.000	22.100	0.164	135.0	0.123	4.00	0.0	0.600	0	300	Pipe/C	Conduit	0
7.001	29.600	0.074	400.0	0.167	0.00	0.0	0.600	0	450	Pipe/C	Conduit	Ť
7.002	44.900	0.112	400.0	0.134	0.00	0.0	0.600	0	450	Pipe/C	Conduit	ď
				NT	otrople	Dogulta	Tabla					
				<u>IN</u>	ELWOIK	RESUILS .	Lante					
PN	I Ra	in	T.C.	US/IL Σ	I.Area	Σ Base	Foul	Add F	low	Vel	Cap 1	Flow
	(mm/	/hr) (1	mins)	(m)	(ha)	Flow (l/s)	(l/s)	(1/s	3)	(m/s) (1/s) (1/s)
1.0	01 71	L.29	25.66	4.690	0.098	0.0	0.0		0.0	0.75	29.8	25.1
1.0	02 70	0.70	25.93	4.602	0.145	0.0	0.0		0.0	1.24	49.3	36.9
4.0	00 100		1 26	1 500	0 174	0 0	0 0		0 0	1 50 7	10 1	62 9
4.0	01 100).00	4.35	4.378	0.280	0.0	0.0		0.0	1.83 3	95.4 1	01.1

4.0	100 II	10.00	4.20	4.300	0.1/4	0.0	0.0	0.0	1.00	342.1	02.0	
4.0	01 10	00.00	4.35	4.378	0.280	0.0	0.0	0.0	1.83	395.4	101.1	
1.0	03 .	70.31	26.11	3.891	0.543	0.0	0.0	0.0	1.39	615.4	137.8	
5.0	00 10	00.00	4.19	4.725	0.142	0.0	0.0	0.0	1.04	115.0	51.3	
1.0	04	69.54	26.48	3.853	0.685	0.0	0.0	0.0	1.39	615.4	171.9	
6.0	00 10	00.00	4.15	4.950	0.015	0.0	0.0	0.0	1.00	17.8	5.4	
1.0	05 0	68.75	26.87	3.776	0.756	0.0	0.0	0.0	1.49	658.3	187.6	
1.0	06 0	68.29	27.11	3.676	0.916	0.0	0.0	0.0	1.49	658.3	225.8	
1.0	07 (67.46	27.53	3.617	0.955	0.0	0.0	0.0	1.49	658.3	232.5	
1.0	08	66.91	27.82	3.508	0.989	0.0	0.0	0.0	1.77	779.9	238.8	
7.0	00 10	00.00	4.27	4.800	0.123	0.0	0.0	0.0	1.35	95.5	44.4	
7.0	01 10	00.00	4.76	4.486	0.290	0.0	0.0	0.0	1.01	160.7	104.7	
7.0	02 10	00.00	5.50	4.412	0.424	0.0	0.0	0.0	1.01	160.7	153.1	
					1000 0010 -							
				Ű.	1902-2018 1	шоvу	ze					

RPS Gr	oup	Plc											Pa	age	3
Techno	logy	/ Ser	vice	es											
Sherwo	od H	louse	, Sł	nerwoo	od Ave.										-
Newark	, Nc	ottin	ghar	nshire	e, NG.	•••							Ν	/ic	·m
Date 2	9/10	/201	8 12	2:01		De	esign	ed by	loui	s.sim	ıe				.iu in age
File W	KN W	laste	to	Energ	gy Fac.	Cł	necke	d by						ЛC	II Idy
Innovy	ze					Ne	etwor	k 201	8.1						
	<u>Network Design Table for Storm</u>														
PN	Leng	gth F	all	Slope	I.Area	T.E.	Ba	ase	k	HYD	DIA	Sect	ion Ty	pe	Auto
	(m	.)	(m)	(1:X)	(ha)	(mins)	Flow	(l/s)	(mm)	SECT	(mm)				Design
1.009	11.6	500 0	.046	250.0	0.216	0.00		0.0	0.600	0	750	Pipe	/Condu	it	ď
1.010	32.0	0000	.128	250.0	0.053	0.00		0.0	0.600	0	750	Pipe	/Condu	it	್
1.011	6.5	900 0	.028	250.0	0.089	0.00		0.0	0.600	0	750	Pipe.	/Condu /Condu	it	ď
1.012	10 0		.020	250.0	0.000	0.00		0.0	0.600	0	750	Pipe.	/Condu /Condu	1t 	ď
1 014	12.0		020	150.0	0.000	0.00		0.0	0.600	0	600	Pipe.	/Condu	11 1+	d"
1.014	29.0		.193	150.3	0.229	0.00		0.0	0.600	0	600	Pipe	/Condu	it	
1.013	20.0	0000	• 1 7 5	100.0	0.000	0.00		0.0	0.000	0	000	ттрс	Condu	I C	U
					Ne	etwork	. Resi	ults 1	<u> Table</u>						
E	PN	Rain		r.c. 1	JS/IL Σ	I.Area	ΣΕ	Base	Foul	Add I	low	Vel	Cap	F	Low
		(mm/hı	r) (1	nins)	(m)	(ha)	Flow	(l/s)	(l/s)	(1/	s)	(m/s)	(1/s)	(1	/s)
1	009	66 -	70 3	7 93 ·	2 285	1 629		0 0	0 0		0 0	1 77	779 9	20	23
1	010	66 1	14 2	27.95	3 338	1 682		0.0	0.0		0.0	1 77	779.9	40	16
1.	011	66.0	12 2	28.30	3.210	1.771		0.0	0.0		0.0	1.77	779.9	42	2.1
1.	012	65.9	94 2	28.35	3.083	1.771		0.0	0.0		0.0	1.77	779.9	42	2.1
1.	013	65.7	73 2	28.46	3.062	1.771		0.0	0.0		0.0	1.77	779.9	42	2.1
1.	014	65.6	68 2	28.49	3.000	2.000		0.0	0.0		0.0	1.99	561.6	47	4.3
1.	015	65.2	25 2	28.73	2.980	2.000		0.0	0.0		0.0	1.98	561.1	47	4.3
				Free	e Flowi	ng Ou	tfall	Deta	ils f	or St	<u>corm</u>				
			Ou	tfall	Outfa	11 с. 1	Level	I. Lev	el 1	Min	D,L	W			
			Pipe	Numbe	r Name	. (1	m)	(m)	I.	Level (m)	(mm)	(mm)			
				1.01	5	5	5.000	2.7	87	2.650	0	0			
					Simul	ation	Crite	aria	For St	torm					
					<u>ormar</u>					<u></u>					
Ма	Volumetric Runoff Coeff 0.750Additional Flow - % of Total Flow 0.000Areal Reduction Factor 1.000MADD Factor * 10m³/ha Storage 3.000Hot Start (mins)0Inlet Coefficient 0.800Hot Start Level (mm)0 Flow per Person per Day (1/per/day) 0.000Manhole Headloss Coeff (Global)0.500Foul Sewage per hectare (1/s)0.000Output Interval (mins)1														
		Nu N	umber Numb Numbe	of In er of r of C	put Hyd Online (ffline (rograph Control Control	ns 0 N .s 1 N .s 0 N	umber umber umber	of Sto of Tim of Rea	erage : Ne/Area 1 Time	Struc [:] a Diac e Con [.]	tures grams trols	1 0 0		
					<u>Synt</u>	hetic	Rain	fall	Detai	<u>ls</u>					
			Ret	Ra urn Pe	infall) riod (y	Model H ears)	FSR 30 M5	Regi -60 (m	on Eng m)	land	and W 19	ales .200			
	©1982-2018 Innovyze														

RPS Group Plc		Page 4
Technology Services		
Sherwood House, Sherwood Ave.		
Newark, Nottinghamshire, NG		Micro
Date 29/10/2018 12:01	Designed by louis.sime	
File WKN Waste to Energy Fac	Checked by	Diamacje
Innovyze	Network 2018.1	

Synthetic Rainfall Details

Ratio R 0.400 Cv (Winter) 0.840 Profile Type Summer Storm Duration (mins) 30 Cv (Summer) 0.750

RPS Group Plc		Page 5
Technology Services		
Sherwood House, Sherwood Ave.		
Newark, Nottinghamshire, NG		Micro
Date 29/10/2018 12:01	Designed by louis.sime	
File WKN Waste to Energy Fac	Checked by	Diamaye
Innovyze	Network 2018.1	1

Online Controls for Storm

Orifice Manhole: POND, DS/PN: 1.014, Volume (m³): 11.8

Diameter (m) 0.001 Discharge Coefficient 0.600 Invert Level (m) 3.000

RPS Group Plc		Page 6
Technology Services		
Sherwood House, Sherwood Ave.		
Newark, Nottinghamshire, NG		Micro
Date 29/10/2018 12:01	Designed by louis.sime	
File WKN Waste to Energy Fac	Checked by	Diamarje
Innovyze	Network 2018.1	

Storage Structures for Storm

Tank or Pond Manhole: POND, DS/PN: 1.014

Invert Level (m) 3.000

Depth (m) Area (m²) Depth (m) Area (m²)

0.000 246.5 2.880 961.9

©1982-2018 Innovyze

RPS Gro	up Pl	С					Page 7
Technol	ogy S	ervices					
Sherwoo	d Hou	se. Sherw	ood Av	e.			
Newark.	Nott	inghamshi	re. N				
Date 20	/10/2	018 12.01	10, 10		asigned by 1	ouis simo	
Date 23					esigned by i	Ours.sime	Drainage
FILE WK	N Was	te to Ene	rgy Fa		пескеа ру	_	
Innovyz	е			Ne	etwork 2018.	1	
<u>2 year</u>	Retu	<u>rn Period</u>	Summa	<u>ry of C</u>	<u>ritical Resu</u>	<u>lts by Maxim</u>	uum Level (Rank 1)
				<u>f</u>	<u>for Storm</u>		
		Juneal Dedu	ation Ro	<u>Simul</u>	ation Criteria	l Elerr & ef	matal Elaw 0.000
		Hot S	Start (m	ins)		Factor * 10m ³ /	ha Storage 3 000
		Hot Star	: Level	(mm)	0	Inlet Co	effiecient 0.800
Mar	hole H	leadloss Coe	eff (Glo	bal) 0.5	00 Flow per Pe	erson per Day (1/per/day) 0.000
E	'oul Se	wage per he	ectare (l/s) 0.0	0 0		
		Number of	Input Hy	/drograph	ns 0 Number of	Storage Struct	cures 1
		Number o	f Online	e Control	ls I Number of	Time/Area Diag	grams U
		Number of	OTTTTHE	e control	IS O NUMBER OF	Real line cont	
				Synthetic	c Rainfall Deta	ails	
		Ra	ainfall	Model	FEH	I D3 (1km) 0	.250
		FEH Rain	nfall Ve	rsion	1999	E (1km) 0	.312
		2	Site Loc	ation GB	592000 166800	F (1km) 2	.546
			C	(1km)	-0.025	Cv (Summer) 0	.750
			DI D2	(1 KM)	0.302	CV (Winter) U	.840
			DZ	(1 KIII)	0.505	,	
		Margin fo	r Flood	Risk War	rning (mm) 300	.0 DVD Stat	cus ON
		2		Analysis	s Timestep Fin	ne Inertia Stat	tus ON
				Ι	OTS Status (NC	
			P	rofile(s)	Summer and Wi	nter
		D	uration(s) (mins) 15, 30, 60,	120, 180, 240,	360
		Return	Period(s) (years)	2, 30,	100
		C	limate C	hange (%)	0, 0	, 20
			Poturn	Climate	First (X)	First (V)	First (7) Overflow
PN	Name	Storm	Period	Change	Surcharge	Flood	Overflow Act.
	mane	00011	101100	onunge	buronarge	11000	
1.000	S1	15 Summer	2	+0%	30/15 Summer	100/15 Summer	
2.000	CP	30 Winter	2	+0%	30/15 Summer	100/15 Summer	
3.000	INT1	15 Summer	2	+0응	100/15 Summer	100/15 Summer	
1.001	S2	15 Winter	2	+0%	30/15 Summer	100/15 Summer	
4 000	53	15 Winter	2	+U≷ ⊥∩≗	100/15 Summer	100/15 Winter	
4.001	54	15 Winter	2	+0%	100/15 Summer	100/15 Winter	
1.003	S6	15 Winter	2	+0%	30/15 Winter	100/15 Winter	
5.000	S7	15 Summer	2	+0%	100/15 Summer	100/15 Winter	
1.004	S8	15 Winter	2	+0%	30/15 Winter		
6.000	S9	15 Summer	2	+0%	100/15 Summer	100/15 Winter	
1.005	S10	15 Winter	2	+0%	30/15 Winter		
1.006	S11	360 Winter	2	+0%	30/15 Winter		
1 002	512 513	360 Winter	2	+U3 +N2	30/15 Summer		
7.000	S14	15 Winter	2	+0%	30/15 Summer	100/15 Summer	
7.001	s15	15 Winter	2	+0%	30/15 Summer	100/15 Winter	
7.002	S16	15 Winter	2	+0%	30/15 Summer		
				©1982-	-2018 Innovy	ze	
1					,	-	

RPS Group Plc		Page 8
Technology Services		
Sherwood House, Sherwood Ave.		
Newark, Nottinghamshire, NG		Micro
Date 29/10/2018 12:01	Designed by louis.sime	
File WKN Waste to Energy Fac	Checked by	Diamaye
Innovyze	Network 2018.1	

2 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Storm

PN	US/MH Name	Water Level (m)	Surcharged Depth (m)	Flooded Volume (m³)	Flow / Cap.	Overflow (1/s)	Pipe Flow (1/s)	Status	Level Exceeded
1.000	S1	5.002	-0.098	0.000	0.26		6.4	OK	2
2.000	CP	4.902	-0.123	0.000	0.07		1.5	OK	2
3.000	INT1	5.009	-0.166	0.000	0.16		9.3	OK	2
1.001	S2	4.816	-0.099	0.000	0.59		16.2	OK	2
1.002	S3	4.718	-0.108	0.000	0.53		23.8	OK	2
4.000	S4	4.627	-0.398	0.000	0.13		35.6	OK	1
4.001	S5	4.541	-0.361	0.000	0.21		51.9	OK	1
1.003	S6	4.166	-0.475	0.000	0.27		94.5	OK	1
5.000	S7	4.874	-0.226	0.000	0.33		29.2	OK	1
1.004	S8	4.124	-0.479	0.000	0.25		118.4	OK	
6.000	S9	4.995	-0.105	0.000	0.20		3.1	OK	
1.005	S10	4.047	-0.479	0.000	0.24		126.0	OK	
1.006	S11	4.043	-0.383	0.000	0.05		23.2	OK	
1.007	S12	4.045	-0.322	0.000	0.04		23.7	OK	
1.008	S13	4.047	-0.210	0.000	0.04		22.9	OK	
7.000	S14	4.912	-0.188	0.000	0.30		25.2	OK	2
7.001	S15	4.699	-0.237	0.000	0.37		50.9	OK	1
7.002	S16	4.636	-0.226	0.000	0.50		71.7	OK	

RPS Group Plc		Page 9
Technology Services		
Sherwood House, Sherwood Ave.		
Newark, Nottinghamshire, NG		Mirro
Date 29/10/2018 12:01	Designed by louis.sime	
File WKN Waste to Energy Fac	Checked by	Diamage
Innovyze	Network 2018.1	

2 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Storm

										Water
	US/MH		Return	Climate	First	t (X)	First (Y)	First (Z)	Overflow	Level
PN	Name	Storm	Period	Change	Surcl	harge	Flood	Overflow	Act.	(m)
1.009	S17	360 Winter	2	+0%	30/15	Summer				4.048
1.010	S18	360 Winter	2	+0읭	30/15	Summer				4.048
1.011	S19	360 Winter	2	+0%	2/240	Winter				4.043
1.012	INT2	360 Winter	2	+0%	2/120	Winter				4.043
1.013	S20	360 Winter	2	+0%	2/120	Winter				4.043
1.014	POND	360 Winter	2	+0%	2/30	Winter				4.043
1.015	S21	60 Winter	2	+0읭						2.980

		Surcharged	Flooded			Pipe		
	US/MH	Depth	Volume	Flow /	Overflow	Flow		Level
PN	Name	(m)	(m³)	Cap.	(l/s)	(l/s)	Status	Exceeded
1.009	S17	-0.086	0.000	0.08		36.2	OK	
1.010	S18	-0.040	0.000	0.06		36.2	OK	
1.011	S19	0.083	0.000	0.09		35.5	SURCHARGED	
1.012	INT2	0.210	0.000	0.10		34.8	SURCHARGED	
1.013	S20	0.231	0.000	0.07		34.1	SURCHARGED	
1.014	POND	0.443	0.000	0.00		0.0	SURCHARGED	
1.015	S21	-0.600	0.000	0.00		0.0	OK	

RPS Gro	up Pl	С					Page 10
Technol	ogy S	ervices					
Sherwoo	d Hou	se. Sherw	ood Av	a.			
Newark.	Nott	inghamshi	re. N				
Date 20	/10/2	018 12.01			agianed by 1	ouis simo	
Date 23	N Maa	010 12.01			esigned by i	.ouis.sime	Drainage
FILE WF	IN Was	LE LO ENE	rgy Fa			1	
Innovyz	е			Ne	etwork 2018.	1	
20	. D	Denie			Duitical Dec	ulte hu Merri	mum Iarral (Damla 1)
<u>30 year</u>	ς κετι	irn Period	<u>summa</u>	<u>ry oi (</u>	Ear Starm	uits by Maxi	<u>mum Level (Rank I)</u>
				<u>_</u>	LOI SLOIM		
				Simul	ation Criteria	a	
		Areal Reduc	ction Fa	ctor 1.0	000 Addition	al Flow - % of	Total Flow 0.000
		Hot S	Start (m	ins)	0 MADD	Factor * 10m ³ /	ha Storage 3.000
Mor	holo T	Hot Start	: Level	(mm)	0 SOO Elevener D	Inlet Co	effiecient 0.800
Mai	noie r 'oul Se	wage per he	etare (Dal) 0.5 1/s) 0.0	000 FIOW per P	erson per Day (1/per/day) 0.000
1	OUL DC	wage per ne		1/5/ 0.0			
		Number of	Input Hy	/drograph	ns 0 Number of	Storage Struc	tures 1
		Number o	f Online	e Control	ls 1 Number of	Time/Area Dia	grams O
		Number of	Offline	e Control	ls 0 Number of	Real Time Con	trols 0
				Syntheti	c Rainfall Det	ails	
		Ra	infall .	Model	FEI	H D3 (1km) (.250
		FEH Rair	nfall Ve	rsion	1999	9 E (1km) (.312
		5	Site Loc	ation GB	3 592000 16680) F (1km) 2	2.546
			С	(1km)	-0.02	5 Cv (Summer) (.750
			D1	(1 km)	0.302	2 Cv (Winter) (.840
			DZ	(1 KM)	0.38	9	
		Margin fo	r Flood	Risk War	rning (mm) 300	.0 DVD Sta	tus ON
		2		Analysis	s Timestep Fi	ne Inertia Sta	tus ON
				Ι	DTS Status	ON	
			P	rofile(s	;)	Summer and Wi	nter
		Dı	uration(s) (mins	s) 15, 30, 60,	120, 180, 240,	360
		Return 1	Period(s) (years	;)	2, 30,	100
		C	limate C	hange (%	;)	Ο, Ο	, 20
	US/MH		Return	Climate	First (X)	First (Y)	First (Z) Overflow
PN	Name	Storm	Period	Change	Surcharge	Flood	Overflow Act.
1 000	01	15 574	20		20/15 0	100/15 0	
2 000	SI	15 Winter	05 05	+U% ⊥∩≗	30/15 Summer	100/15 Summer	
3.000	INT1	15 Winter	30	+0%	100/15 Summer	: 100/15 Summer	
1.001	S2	15 Winter	30	+0%	30/15 Summer	100/15 Summer	
1.002	S3	15 Winter	30	+0%	30/15 Summer	100/15 Summer	
4.000	S4	360 Winter	30	+0%	100/15 Summer	100/15 Winter	
4.001	S5	360 Winter	30	+0%	100/15 Summer	100/15 Winter	
5 000	56 97	15 Summor	30 20	+U봉 +N의	JU/15 Winter	100/15 Winter	
1.004	57 58	360 Winter	30	+0%	30/15 Winter	, wincer	
6.000	S9	15 Summer	30	+0%	100/15 Summer	100/15 Winter	
1.005	S10	360 Winter	30	+0%	30/15 Winter		
1.006	S11	360 Winter	30	+0%	30/15 Winter		
1.007	S12	360 Winter	30	+0%	30/60 Winter		
7 000	513 917	15 Winter	3U 20	+U≷ ⊥∩♀	30/15 Summer	- 100/15 Summor	
7.001	S14	15 Winter	30	+0%	30/15 Summer	: 100/15 Winter	
7.002	S16	15 Winter	30	+0%	30/15 Summer		
				@1982-	-2018 Innov	70	
1				ST 202-	TOTO TUNOAÀ	10	

RPS Group Plc		Page 11
Technology Services		
Sherwood House, Sherwood Ave.		
Newark, Nottinghamshire, NG		Micco
Date 29/10/2018 12:01	Designed by louis.sime	
File WKN Waste to Energy Fac	Checked by	Diamaye
Innovyze	Network 2018.1	1

30 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Storm

	US/MH	Water Level	Surcharged Depth	Flooded Volume	Flow /	Overflow	Pipe Flow		Level
PN	Name	(m)	(m)	(m³)	Cap.	(1/s)	(l/s)	Status	Exceeded
1.000	S1	5.133	0.033	0.000	0.62		14.9	SURCHARGED	2
2.000	CP	5.081	0.056	0.000	0.27		5.5	SURCHARGED	2
3.000	INT1	5.102	-0.073	0.000	0.39		22.6	OK	2
1.001	S2	5.076	0.161	0.000	1.30		35.8	SURCHARGED	2
1.002	S3	4.934	0.107	0.000	1.26		56.2	SURCHARGED	2
4.000	S4	4.745	-0.280	0.000	0.03		9.2	OK	1
4.001	S5	4.746	-0.157	0.000	0.06		14.8	OK	1
1.003	S6	4.750	0.109	0.000	0.08		26.6	SURCHARGED	1
5.000	S7	4.992	-0.108	0.000	0.85		74.3	OK	1
1.004	S8	4.753	0.150	0.000	0.07		32.4	SURCHARGED	
6.000	S9	5.025	-0.075	0.000	0.50		7.8	OK	
1.005	S10	4.754	0.228	0.000	0.07		35.8	SURCHARGED	
1.006	S11	4.752	0.327	0.000	0.09		43.4	SURCHARGED	
1.007	S12	4.750	0.383	0.000	0.09		45.3	SURCHARGED	
1.008	S13	4.750	0.492	0.000	0.08		46.6	SURCHARGED	
7.000	S14	5.145	0.045	0.000	0.68		57.6	SURCHARGED	2
7.001	S15	5.031	0.095	0.000	0.99		136.9	SURCHARGED	1
7.002	S16	4.953	0.091	0.000	1.38		199.2	SURCHARGED	

RPS Group Plc		Page 12
Technology Services		
Sherwood House, Sherwood Ave.		
Newark, Nottinghamshire, NG		Mirro
Date 29/10/2018 12:01	Designed by louis.sime	
File WKN Waste to Energy Fac	Checked by	Diamage
Innovyze	Network 2018.1	

<u>30 year Return Period Summary of Critical Results by Maximum Level (Rank 1)</u> <u>for Storm</u>

										Water
	US/MH		Return	Climate	First	(X)	First (Y)	First (Z)	Overflow	Level
PN	Name	Storm	Period	Change	Surch	arge	Flood	Overflow	Act.	(m)
1.009	S17	360 Winte	r 30	+0읭	30/15 \$	Summer				4.750
1.010	S18	360 Winte	r 30	+0%	30/15 \$	Summer				4.746
1.011	S19	360 Winte	r 30	+0%	2/240 V	Vinter				4.750
1.012	INT2	360 Winte	r 30	+0%	2/120 V	Vinter				4.746
1.013	S20	360 Winte	r 30	+0읭	2/120 V	Vinter				4.748
1.014	POND	360 Winte	r 30	+0읭	2/30 V	Vinter				4.746
1.015	S21	60 Winte	r 30	+0%						2.980

		Surcharged	Flooded			Pipe		
	US/MH	Depth	Volume	Flow /	Overflow	Flow		Level
PN	Name	(m)	(m³)	Cap.	(1/s)	(l/s)	Status	Exceeded
1.009	S17	0.616	0.000	0.16		75.2	SURCHARGED	
1.010	S18	0.658	0.000	0.13		76.8	SURCHARGED	
1.011	S19	0.790	0.000	0.20		79.7	SURCHARGED	
1.012	INT2	0.914	0.000	0.23		79.2	SURCHARGED	
1.013	S20	0.936	0.000	0.16		77.5	SURCHARGED	
1.014	POND	1.146	0.000	0.00		0.0	SURCHARGED	
1.015	S21	-0.600	0.000	0.00		0.0	OK	

			Page 13								
Technology Services											
Sherwood House, Sherwood Ave.											
Newark, Nottinghamshire, NG			Micco								
Date 29/10/2018 12:01	Designed by loui	s.sime									
File WKN Waste to Energy Fac Checked by											
Innovyze	Network 2018.1										
100 year Return Period Summary	of Critical Resu	lts by Maximum	Level (Rank								
<u>1) for Storm</u>											
Simulation Criteria											
Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000											
Hot Start (mins) U MADD Factor * 10m³/ha Storage 3.000 Hot Start Level (mm) 0 Thet Coefficient 0.800											
Manhole Headloss Coeff (Global)	Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (l/per/day) 0.000										
Foul Sewage per hectare (l/s)	0.000										
Number of Input Hydrogr	aphs () Number of Sta	arago Structuros	1								
Number of Online Cont	rols 1 Number of Tin	me/Area Diagrams (1 D								
Number of Offline Cont	rols 0 Number of Rea	al Time Controls (- D								
Synthe	tic Rainfall Details	<u>5</u> D2 (11) 0.050									
Rainfall Model FEH Bainfall Version	FEH 1999	D3 (1Km) 0.250 E (1km) 0.312									
Site Location	GB 592000 166800	F (1km) 2.546									
C (1km)	-0.025 Cv	(Summer) 0.750									
D1 (1km)	0.302 Cv	(Winter) 0.840									
D2 (1km)	0.389										
Margin for Flood Risk	Warning (mm) 300.0	DVD Status ON									
Analy	sis Timestep Fine 1	Inertia Status ON									
	DTS Status ON										
Profil	e(s) Su	mmer and Winter									
Duration(s) (m	ins) 15, 30, 60, 120	, 180, 240, 360									
Return Period(s) (ye	ars)	2, 30, 100									
Climate Change	(%)	0, 0, 20									
US/MH Return Clima	te First (X) F	First (Y) First	(Z) Overflow								
PN Name Storm Period Chang	e Surcharge	Flood Overi	LOW ACT.								
1.000 S1 15 Winter 100 +2	0% 30/15 Summer 100)/15 Summer									
2.000 CP 15 Winter 100 +2	0% 30/15 Summer 100)/15 Summer									
3.000 INT1 15 Winter 100 +2	0% 100/15 Summer 100)/15 Summer									
1.001 S2 15 Winter 100 +2 1.002 S3 15 Winter 100 +2	しる 30/15 Summer 100 D& 30/15 Summer 100	0/15 Summer									
T.007 DD TO WINCET TOO TO	0% 100/15 Summer 100)/15 Winter									
4.000 S4 15 Winter 100 +2	0% 100/15 Summer 100)/15 Winter									
4.000 S4 15 Winter 100 +2 4.001 S5 15 Winter 100 +2		JIJ WINCEL									
4.000 S4 15 Winter 100 +2 4.001 S5 15 Winter 100 +2 1.003 S6 15 Winter 100 +2	0% 30/15 Winter 100)/15 Winter									
4.000 S4 15 Winter 100 +2 4.001 S5 15 Winter 100 +2 1.003 S6 15 Winter 100 +2 5.000 S7 15 Winter 100 +2 1.004 S2 15 Winter 100 +2	0% 30/15 Winter 100 0% 100/15 Summer 100)/15 Winter)/15 Winter									
4.000 S4 15 Winter 100 +2 4.001 S5 15 Winter 100 +2 1.003 S6 15 Winter 100 +2 5.000 S7 15 Winter 100 +2 1.004 S8 15 Winter 100 +2 6.000 S9 15 Winter 100 +2	0% 30/15 Winter 100 0% 100/15 Summer 100 0% 30/15 Winter 0% 100/15 Summer 100)/15 Winter)/15 Winter)/15 Winter									
4.000 S4 15 Winter 100 +2 4.001 S5 15 Winter 100 +2 1.003 S6 15 Winter 100 +2 5.000 S7 15 Winter 100 +2 1.004 S8 15 Winter 100 +2 6.000 S9 15 Winter 100 +2 1.005 S10 15 Winter 100	0% 30/15 Winter 100 0% 100/15 Summer 100 0% 30/15 Winter 0% 100/15 Summer 100 0% 30/15 Winter)/15 Winter)/15 Winter)/15 Winter									
4.000 S4 15 Winter 100 +2 4.001 S5 15 Winter 100 +2 1.003 S6 15 Winter 100 +2 5.000 S7 15 Winter 100 +2 1.004 S8 15 Winter 100 +2 6.000 S9 15 Winter 100 +2 1.005 S10 15 Winter 100 +2 1.006 S11 15 Winter 100 +2	0% 30/15 Winter 100 0% 100/15 Summer 100 0% 30/15 Winter 0% 100/15 Summer 100 0% 30/15 Winter 0% 30/15 Winter)/15 Winter)/15 Winter)/15 Winter									
4.000 S4 15 Winter 100 +2 4.001 S5 15 Winter 100 +2 1.003 S6 15 Winter 100 +2 5.000 S7 15 Winter 100 +2 1.004 S8 15 Winter 100 +2 6.000 S9 15 Winter 100 +2 1.005 S10 15 Winter 100 +2 1.006 S11 15 Winter 100 +2 1.007 S12 15 Winter 100 +2	0% 30/15 Winter 100 0% 100/15 Summer 100 0% 30/15 Winter 0% 100/15 Summer 100 0% 30/15 Winter 0% 30/15 Winter 0% 30/60 Winter)/15 Winter)/15 Winter)/15 Winter									
4.000 S4 15 Winter 100 +2 4.001 S5 15 Winter 100 +2 1.003 S6 15 Winter 100 +2 5.000 S7 15 Winter 100 +2 1.004 S8 15 Winter 100 +2 6.000 S9 15 Winter 100 +2 1.005 S10 15 Winter 100 +2 1.006 S11 15 Winter 100 +2 1.007 S12 15 Winter 100 +2 1.008 S13 15 Winter 100 +2 7 000 S14 15 Winter 100 +2	0% 30/15 Winter 100 0% 100/15 Summer 100 0% 30/15 Winter 0% 30/15 Summer 0% 30/15 Summer)/15 Winter)/15 Winter)/15 Winter									
4.000 S4 15 Winter 100 +2 4.001 S5 15 Winter 100 +2 1.003 S6 15 Winter 100 +2 5.000 S7 15 Winter 100 +2 1.004 S8 15 Winter 100 +2 6.000 S9 15 Winter 100 +2 1.005 S10 15 Winter 100 +2 1.006 S11 15 Winter 100 +2 1.007 S12 15 Winter 100 +2 1.008 S13 15 Winter 100 +2 7.000 S14 15 Winter 100 +2 7.001 S15 15 Winter 100 +2	0% 30/15 Winter 100 0% 100/15 Summer 100 0% 30/15 Winter 0% 100/15 Summer 100 0% 30/15 Winter 0% 30/15 Winter 0% 30/15 Summer 0% 30/15 Summer 100 0% 30/15 Summer 100	0/15 Winter 0/15 Winter 0/15 Winter 0/15 Summer 0/15 Summer									
4.000 S4 15 Winter 100 +2 4.001 S5 15 Winter 100 +2 1.003 S6 15 Winter 100 +2 5.000 S7 15 Winter 100 +2 1.004 S8 15 Winter 100 +2 6.000 S9 15 Winter 100 +2 1.005 S10 15 Winter 100 +2 1.006 S11 15 Winter 100 +2 1.007 S12 15 Winter 100 +2 1.008 S13 15 Winter 100 +2 7.000 S14 15 Winter 100 +2 7.001 S15 15 Winter 100 +2 7.002 S16 15 Winter 100 +2	0% 30/15 Winter 100 0% 100/15 Summer 100 0% 30/15 Winter 100 0% 100/15 Summer 100 0% 100/15 Summer 100 0% 30/15 Winter 100 0% 30/15 Winter 0% 0% 30/15 Summer 100 0% 30/15 Summer 100 0% 30/15 Summer 100 0% 30/15 Summer 100	<pre>//15 Winter)/15 Winter)/15 Winter)/15 Summer)/15 Summer)/15 Winter</pre>									

RPS Group Plc		Page 14
Technology Services		
Sherwood House, Sherwood Ave.		
Newark, Nottinghamshire, NG		Mirco
Date 29/10/2018 12:01	Designed by louis.sime	
File WKN Waste to Energy Fac	Checked by	Diamage
Innovyze	Network 2018.1	

100 year Return Period Summary of Critical Results by Maximum Level (Rank <u>1) for Storm</u>

PN	US/MH Name	Water Level (m)	Surcharged Depth (m)	Flooded Volume (m³)	Flow / Cap.	Overflow (1/s)	Pipe Flow (l/s)	Status	Level Exceeded
1.000	S1	6.003	0.903	3.476	0.99		24.0	FLOOD	2
2.000	CP	6.001	0.976	1.265	0.77		15.8	FLOOD	2
3.000	INT1	6.005	0.830	4.724	0.53		31.0	FLOOD	2
1.001	S2	6.001	1.086	0.696	2.31		63.7	FLOOD	2
1.002	S3	6.002	1.176	2.257	1.55		69.5	FLOOD	2
4.000	S4	6.011	0.986	11.240	0.48		129.0	FLOOD	1
4.001	S5	6.003	1.101	3.114	0.81		201.6	FLOOD	1
1.003	S6	6.000	1.359	0.897	0.91		318.4	FLOOD	1
5.000	S7	6.001	0.901	1.334	1.49		130.8	FLOOD	1
1.004	S8	5.990	1.387	0.000	0.81		390.0	FLOOD RISK	
6.000	S9	5.960	0.860	0.018	0.88		13.7	FLOOD	
1.005	S10	5.947	1.421	0.000	0.74		390.9	FLOOD RISK	
1.006	S11	5.896	1.471	0.000	1.03		484.8	FLOOD RISK	
1.007	S12	5.831	1.465	0.000	0.93		495.4	FLOOD RISK	
1.008	S13	5.736	1.478	0.000	0.84		506.5	FLOOD RISK	
7.000	S14	6.010	0.910	10.100	1.18		99.6	FLOOD	2
7.001	S15	6.002	1.066	2.526	1.66		229.1	FLOOD	1
7.002	S16	5.995	1.132	0.000	2.19		317.2	FLOOD RISK	

©1982-2018 Innovyze

RPS Group Plc		Page 15
Technology Services		
Sherwood House, Sherwood Ave.		
Newark, Nottinghamshire, NG		Micro
Date 29/10/2018 12:01	Designed by louis.sime	
File WKN Waste to Energy Fac	Checked by	Diamage
Innovyze	Network 2018.1	

100 year Return Period Summary of Critical Results by Maximum Level (Rank <u>1) for Storm</u>

PN	US/MH Name	Stor	Return m Period	Climate Change	Firs Surc	t (X) harge	First (Y Flood) First (Z) Overflow	Overflow Act.	Water Level (m)
				2		-				• •
1.009	S17	15 Win	ter 100	+20%	30/15	Summer				5.650
1.010	S18	360 Win	ter 100	+20%	30/15	Summer				5.479
1.011	S19	360 Win	ter 100	+20%	2/240	Winter				5.479
1.012	INT2	360 Win	ter 100	+20%	2/120	Winter				5.479
1.013	S20	360 Win	ter 100	+20%	2/120	Winter				5.479
1.014	POND	360 Win	ter 100	+20%	2/30	Winter				5.479
1.015	S21	60 Win	iter 100	+20%						2.980

		Surcharged	Flooded			Pipe		
	US/MH	Depth	Volume	Flow /	Overflow	Flow		Level
PN	Name	(m)	(m³)	Cap.	(1/s)	(l/s)	Status	Exceeded
1.009	S17	1.515	0.000	1.92		903.1	SURCHARGED	
1.010	S18	1.391	0.000	0.22		133.2	SURCHARGED	
1.011	S19	1.519	0.000	0.35		139.5	SURCHARGED	
1.012	INT2	1.647	0.000	0.40		138.7	SURCHARGED	
1.013	S20	1.667	0.000	0.29		137.4	SURCHARGED	
1.014	POND	1.879	0.000	0.00		0.0	SURCHARGED	
1.015	S21	-0.600	0.000	0.00		0.0	OK	

©1982-2018 Innovyze